Math 2 HW \# 2

1. Let X be a random variable with density

$$
f_{X}(t)= \begin{cases}C x^{-3} & \text { if } x>5 \\ 0 & \text { else }\end{cases}
$$

(a) Calculate the value of the constant C so that f_{X} is a probability density.
(b) Calculate the cumulative distribution function for X.
(c) Calculate the expectation value of X.
(d) Show that the expectation value of $E\left[X^{2}\right]=\infty$. Conclude from this that also $\operatorname{Var}(X)=$ $\infty, \sigma(X)=\infty$.
2. Consider the following gambling game: player A pays n dollars to player B. Then player A flips a fair coin, if it's "heads" he flips again; he keeps flipping until it falls "tails". Then player B pays 2^{k} dollars to player A, where k is the numbers of flips that were "heads".
(a) Show that the expected value for player B 's profit for one game is $-\infty$.
(b) Suppose that the following additional rule is added to the game: if A suceeds in flipping 40 heads in a row, then the game ends. Calculate the expected value of the new game for player B.
(c) Despite the expected profit of $-\infty$, most mathematicians would play the original game as B if n is sufficiently large, say $n=40$. Do you think this is a good idea, and why/ why not?
3. (Problem 5.21E from A first course in probability by Sheldon Ross; exact wording altered) Suppose that the height of a man is a normal random variable with parameters (measured in inches) $\mu=71, \sigma=2.5$. According to this model, calculate the percentage of men taller than $74^{\prime \prime}$, and $77^{\prime \prime}$.
4. (Problem 5.15T from A first course in probability by Sheldon Ross; exact wording altered) Suppose X is uniformly distributed over $(0, a)$. Calculate the hazard rate function for X.
5. (Problem 5.6ST from A first course in probability by Sheldon Ross; exact wording altered) Your company must make a sealed bid agains one other company for a construction project. If your bid succeeds, it will cost you 100,000 dollars to complete the work. You model the other company's bid as a random variable with uniform distribution on the interval from 70,000 to 140,000 dollars. How much should you bid to maximize expected profit?

